:: Utilisateurs Réfugiés SpiceGuid ► Test de coloration du code Anubis

Version d'archive

  • Ce site est en lecture seule. Certains liens dynamiques peuvent ne pas fonctionner correctement.

Test de coloration du code Anubis

Message de test de la coloration du code Anubis.

Commençons par un petit dérivateur formel en Anubis :

// a simple formal derivator

// functions from R to R
public type RtoR :
   x,
   cst(Int),
   ~ RtoR,
   RtoR + RtoR,
   RtoR * RtoR,
   sin(RtoR),
   cos(RtoR),
   exp(RtoR).


// automagically generated
public type RtoR_recu($T) :
   recu
   (
      $T x,
      $T cst,
      ($T) -> $T neg,
      ($T,$T) -> $T add,
      (RtoR,$T,RtoR,$T) -> $T mul,
      (RtoR,$T) -> $T sin,
      (RtoR,$T) -> $T cos,
      (RtoR,$T) -> $T exp
   ).

// automagically generated
public define $T recu (RtoR f,RtoR_recu($T) d)
   =
if f is
{
   x then x(d),
   cst(z) then cst(d),
   ~ u    then neg(d)(recu(u,d)),
   u + v  then add(d)(recu(u,d),recu(v,d)),
   u * v  then mul(d)(u,recu(u,d),v,recu(v,d)),
   sin(u) then sin(d)(u,recu(u,d)),
   cos(u) then cos(d)(u,recu(u,d)),
   exp(u) then exp(d)(u,recu(u,d))
}.


public define RtoR deriv (RtoR f)
   =
recu
(
   f,
   recu
   (
      cst(0),
      cst(1),
      (RtoR du) |-> ~ du,
      (RtoR du,RtoR dv) |-> du + dv,
      (RtoR u,RtoR du,RtoR v,RtoR dv) |-> du * v + u * dv,
      (RtoR u,RtoR du) |-> du * cos(u),
      (RtoR u,RtoR du) |-> ~ du * sin(u),
      (RtoR u,RtoR du) |-> du * exp(u)
   )
).

J'attire l'attention du lecteur sur le fait que la fonction deriv n'est   pas directement récursive, nulle part dans son corps elle appelle la fonction  deriv !

En effet, toute la récursion est encapsulée dans le récurseur recu .

Le second exemple, à savoir les ensembles totalement ordonnés, illustre un ensemble plus complet de récurseurs : accu , fold , cata , recu et para .

Spoiler (Sélectionnez le texte dans le cadre pointillé pour le faire apparaître)


// totally ordered set of integers
public type Ordered :
   empty,
   ordered(Ordered,Int,Ordered).


// automagically generated
public type Ordered_accu($T) :
   accu
   (
      $T->$T empty,
      (Int,$T) -> $T cons,
   ).

// automagically generated
public define $T accu (Ordered t,$T acc,Ordered_accu($T) d)
   =
if t is
{
   empty then empty(d)(acc),
   ordered(l,i,r) then accu(l,cons(d)(i,accu(r,acc,d)),d)
}.

// automagically generated
public type Ordered_fold($T) :
   fold
   (
      $T empty,
      ($T,Int,$T) -> $T ordered
   ).

// automagically generated
public define $T fold (Ordered s,Ordered_fold($T) d)
   =
if s is
{
   empty then empty(d),
   ordered(l,i,r) then ordered(d)(fold(l,d),i,fold(r,d)) 
}.

// automagically generated
public type Ordered_cata($T) :
   cata
   (
      $T empty,
      (One->$T,Int,One->$T) -> $T ordered
   ).

// automagically generated
public define $T cata (Ordered s,Ordered_cata($T) d,One _)
   =
if s is
{
   empty then empty(d),
   ordered(l,i,r) then ordered(d)
   ((One u)|->cata(l,d,u),i,(One u)|->cata(r,d,u)) 
}.

// automagically generated
public type Ordered_recu($T) :
   recu
   (
      $T empty,
      (Ordered,$T,Int,Ordered,$T) -> $T ordered
   ).

// automagically generated
public define $T recu (Ordered s,Ordered_recu($T) d)
   =
if s is
{
   empty then empty(d),
   ordered(l,i,r) then ordered(d)(l,recu(l,d),i,r,recu(r,d)) 
}.

// automagically generated
public type Ordered_para($T) :
   para
   (
      $T empty,
      (Ordered,One->$T,Int,Ordered,One->$T) -> $T ordered
   ).

// automagically generated
public define $T para (Ordered s,Ordered_para($T) d,One _)
   =
if s is
{
   empty then empty(d),
   ordered(l,i,r) then ordered(d)
   (l,(One u)|->para(l,d,u),i,r,(One u)|->para(r,d,u)) 
}.


public define Word32 cardinal (Ordered s)
   =
fold
(
   s,
   fold
   (
      0,
      (Word32 l,Int _,Word32 r) |-> l + 1 + r
   )
).

   // an alternative cardinal using 'accu' instead of 'fold'
   public define Word32 cardinal (Ordered s)
   =
accu
(
   s,
   0,
   accu
   (
      (Word32 n) |-> n,
      (Int _,Word32 n) |-> n + 1
   )
).

public define Bool member (Ordered s,Int n)
   =
cata
(
   s,
   cata
   (
      false,
      (One->Bool l,Int i,One->Bool r) |->
         if n < i then l(unique)
         else if n > i then r(unique)
         else true  
   ),
   unique
).

public define Bool forall (Ordered s,(Int)->Bool cond)
   =
cata
(
   s,
   cata
   (
      true,
      (One->Bool l,Int i,One->Bool r) |->
            cond(i) & l(unique) & r(unique)  
   ),
   unique
).

public define Ordered insert (Ordered s,Int n)
   =
para
(
   s,
   para
   (
      ordered(empty,n,empty),
      (Ordered l,One->Ordered dl,Int i,Ordered r,One->Ordered dr) |->
         if n < i then ordered(dl(unique),i,r)
         else if n > i then ordered(l,i,dr(unique))
         else s  
   ),
   unique
).

public define Ordered Ordered s + Int n
   =
insert(s,n).

public define Int minimum (Ordered s,Int n)
   =
para
(
   s,
   para
   (
      n,
      (Ordered l,One->Int dl,Int i,Ordered r,One->Int _) |->
         if l is empty then i else dl(unique)
   ),
   unique
).
      
public define Ordered remove_minimum (Ordered sl,Int n,Ordered sr)
   =
if sl is empty then
   sr
else
   ordered
   (
      para
      (
         sl,
         para
         (
            empty,
            (Ordered l,One->Ordered dl,Int i,Ordered r,One->Ordered _) |->
               if l is empty then r
               else ordered(dl(unique),i,r)
         ),
         unique
      ),
      n,
      sr
   ).
   
// concatenation of sa + sb where max(sa) < min(sb)
public define Ordered concat (Ordered sa,Ordered sb)
   =
if sa is empty then
   sb
else if sb is
   {
      empty then sa
      ordered(lb,nb,rb) then
         ordered(sa,minimum(lb,nb),remove_minimum(lb,nb,rb))
   }.
   
public define Ordered remove (Ordered s,Int n)
   =
para
(
   s,
   para
   (
      empty,
      (Ordered l,One->Ordered dl,Int i,Ordered r,One->Ordered dr) |->
         if n < i then ordered(dl(unique),i,r)
         else if n > i then ordered(l,i,dr(unique))
         else concat(l,r)
   ),
   unique
).
      
// returns (sa,b,sb) where max(sa) < n < min(sb) and b = member(s,n)
public define (Ordered,Bool,Ordered) split (Ordered s,Int n)
   =
para
(
   s,
   para
   (
      (empty,false,empty),
      (Ordered l,One->(Ordered,Bool,Ordered) dl,Int i,Ordered r,One->(Ordered,Bool,Ordered) dr) |->
         if n < i then
            (if dl(unique) is (a,b,c) then (a,b,ordered(c,i,r)))
         else if n > i then
            (if dr(unique) is (a,b,c) then (ordered(l,i,a),b,c))
         else (l,true,r)
   ),
   unique
).

public define Ordered filter (Ordered s,Int->Bool cond)
   =
fold
(
   s,
   fold
   (
      empty,
      (Ordered l,Int i,Ordered r) |->
         if cond(i) then ordered(l,i,r) 
         else concat(l,r)
   )
).

public define Ordered union (Ordered sa,Ordered sb)
   =
fold
(
   sa,
   fold
   (
      (Ordered s) |-> s,
      (Ordered->Ordered l,Int i,Ordered->Ordered r) |->
         (Ordered s) |->
         if s is
         {
            empty then empty,
            ordered(sl,si,sr) then
               if split(s,i) is (a,b,c) then ordered(l(a),i,r(c))
         }
   )
)
(sb).

public define Ordered Ordered sa + Ordered sb
   =
union(sa,sb).

public define Ordered intersection (Ordered sa,Ordered sb)
   =
fold
(
   sa,
   fold
   (
      (Ordered s) |-> empty,
      (Ordered->Ordered l,Int i,Ordered->Ordered r) |->
         (Ordered s) |->
         if s is
         {
            empty then empty,
            ordered(sl,si,sr) then
               if split(s,i) is (a,b,c) then
               if b then ordered(l(a),i,r(c))
               else concat(l(a),r(c))
         }
   )
)
(sb).

public define Ordered difference (Ordered sa,Ordered sb)
   =
recu
(
   sa,
   recu
   (
      (Ordered s) |-> empty,
      (Ordered l,Ordered->Ordered dl,Int i,Ordered r,Ordered->Ordered dr) |->
         (Ordered s) |->
         if s is
         {
            empty then ordered(l,i,r),
            ordered(sl,si,sr) then
               if split(s,i) is (a,b,c) then
               if b then concat(dl(a),dr(c))
               else ordered(dl(a),i,dr(c))
         }
   )
)
(sb).

public define Ordered Ordered sa - Ordered sb
   =
difference(sa,sb).

public define Bool subset (Ordered sa,Ordered sb)
   =
fold
(
   sa,
   fold
   (
      (Ordered s) |-> true,
      (Ordered->Bool l,Int i,Ordered->Bool r) |->
         (Ordered s) |->
         if s is
         {
            empty then true,
            ordered(sl,si,sr) then
               if i < si then l(sl) & member(sl,i) & r(s)
               else if i > si then l(s) & member(sr,i) & r(sr)
               else l(sl) & r(sr)
         }
   )
)
(sb).

public define Bool Ordered sa = Ordered sb
   =
subset(sa,sb) & subset(sb,sa).

public define List(Int) to_ordered_list(Ordered t)   
   =
accu
(
   t,
   [],
   accu
   (
      (List(Int) l) |-> l,
      (Int i,List(Int) l) |-> [i . l]
   )
).

Le dernier exemple, à savoir un tax-maximum fusionnable, illustre le récurseur fuse .

Spoiler (Sélectionnez le texte dans le cadre pointillé pour le faire apparaître)

// skew max-heap
public type Skew :
   empty,
   skew(Skew,Int,Skew).

// automagically generated   
public type Skew_fuse :
   fuse
   (
   (Skew,Skew,(Skew,Skew)->Skew,(Skew,Skew)->Skew) -> Skew both_not_empty
   ).

// automagically generated
public define Skew fuse(Skew sa,Skew sb,Skew_fuse d)
   =
if sa is {
   empty then sb
   skew(_,_,_) then
      if sb is
      {
         empty then sa
         skew(_,_,_) then both_not_empty(d)
         (sa,sb,(Skew u,Skew v)|->fuse(u,v,d),(Skew u,Skew v)|->fuse(u,v,d))
      }
}.

public define Skew join(Skew s1,Skew s2)   
   =
fuse
(
   s1,
   s2,
   fuse
   (
      (Skew sa,Skew sb,(Skew,Skew)->Skew fa,(Skew,Skew)->Skew fb) |->
         if sa is {empty then alert,skew(la,na,ra) then
         if sb is {empty then alert,skew(lb,nb,rb) then
         if na > nb then skew(la,na,fa(ra,sb)) 
         else skew(fb(sa,lb),nb,rb)}}
   )
).

public define Skew insert(Skew s,Int n)   
   =
join(s,skew(empty,n,empty)).

public define Skew remove(Skew l,Skew r)
   =   
join(l,r).

Je laisse le soin au lecteur de vérifier que les fonctions (assez avancées) de ces deux derniers exemples ne font appel à aucune récursion ni aucune itération.

au talentueux webmaster qui a implémenté la coloration OCaml , Anubis , Coq ainsi que la citation de code dans le texte, sur ma simple demande.  

Personne n'a encore marqué son appréciation pour cet article. Soyez le premier !

Les derniers commentaires

Ertaï il y a plus de 10 ans

Je comprends encore moins que le Coq, mais c'est très joli biggrinking

:: Utilisateurs Réfugiés SpiceGuid ► Test de coloration du code Anubis

© Copyright 2002-2024 Aeriesguard.com - Mentions légales
Aerie's Guard V 7.0
réalisé par Ertaï, designé par Ivaldir, illustré par Izual et Sophie Masure
Famfamfam